RNS Arithmetic Approach in Lattice-Based Cryptography: Accelerating the "Rounding-off" Core Procedure
نویسندگان
چکیده
Residue Number Systems (RNS) are naturally considered as an interesting candidate to provide efficient arithmetic for implementations of cryptosystems such as RSA, ECC (Elliptic Curve Cryptography), pairings, etc. More recently, RNS have been used to accelerate fully homomorphic encryption as lattice-based cryptogaphy. In this paper, we present an RNS algorithm resolving the Closest Vector Problem (CVP). This algorithm is particularly efficient for a certain class of lattice basis. It provides a full RNS Babai round-off procedure without any costly conversion into alternative positional number system such as Mixed Radix System (MRS). An optimized Cox-Rower architecture adapted to the proposed algorithm is also presented. The main modifications reside in the Rower unit whose feature is to use only one multiplier. This allows to free two out of three multipliers from the Rower unit by reusing the same one with an overhead of 3 more cycles per inner reduction. An analysis of feasibility of implementation within FPGA is also given.
منابع مشابه
Babaï round-off CVP method in RNS: Application to lattice based cryptographic protocols
Lattice based cryptography is claimed as a serious candidate for post quantum cryptography, it recently became an essential tool of modern cryptography. Nevertheless, if lattice based cryptography has made theoretical progresses, its chances to be adopted in practice are still low due to the cost of the computation. If some approaches like RSA and ECC have been strongly optimized in particular ...
متن کاملA Full RNS Variant of FV Like Somewhat Homomorphic Encryption Schemes
Since Gentry’s breakthrough work in 2009, homomorphic cryptography has received a widespread attention. Implementation of a fully homomorphic cryptographic scheme is however still highly expensive. Somewhat Homomorphic Encryption (SHE) schemes, on the other hand, allow only a limited number of arithmetical operations in the encrypted domain, but are more practical. Many SHE schemes have been pr...
متن کاملScaling an RNS Number Using the Core Function
This paper introduces a method for extracting the core of a Residue Number System (RNS) number within the RNS, this affording a new method for scaling RNS numbers. Suppose an RNS comprises a set of co-prime moduli, mi, with ∏mi = M. This paper describes a method for approximately scaling such an RNS number by a subset of the moduli, ∏mj = MJ ≈ √M, with the characteristic that all computations a...
متن کاملOn the Design of Hardware Building Blocks for Modern Lattice-Based Encryption Schemes
We present both a hardware and a software implementation variant of the learning with errors (LWE) based cryptosystem presented by Lindner and Peikert. This work helps in assessing the practicality of lattice-based encryption. For the software implementation, we give a comparison between a matrix and polynomial based variant of the LWE scheme. This module includes multiplication in polynomial r...
متن کاملEfficient Reverse Converter for Three Modules Set {2^n-1,2^(n+1)-1,2^n} in Multi-Part RNS
Residue Number System is a numerical system which arithmetic operations are performed parallelly. One of the main factors that affects the system’s performance is the complexity of reverse converter. It should be noted that the complexity of this part should not affect the earned speed of parallelly performed arithmetic unit. Therefore in this paper a high speed converter for moduli set {2n-1, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015